
JOURNAL OF COMPUTATIONAL PHYSICS 5, 280-327 (1970)

Symbolic Analysis of Feynman Diagrams by Computer*

J. A. CAMPBELL

Department of Physics, Center for Particle Theory, and Department of Computer Science,
University of Texas a! Austin, Austin, Texas 78712

ANTHONY C. HEARN+

Institute of Theoretical Physics,
Department of Physics, Stanford University, Stanford, California 94305

Received August 28, 1969

We describe a system of programs in the language LISP 1.5 which handles all stages
of calculation from the specification of an elementary-particle process in terms of a
Hamiltonian of interaction or Feynman diagrams to the derivation of an absolute square
of the matrix element for the process. Examples of significant parts of the programs are
presented in the text, while a detailed listing of this material is contained in two Appen-
dices which are available on request from the authors.

1. INTRODUCTION

Many of the calculations for scattering or decay processes in elementary-
particle physics are based on methods of perturbation theory. Feynman [l], in
particular, introduced a classification of parts of perturbative expansions from
quantum field theory in terms of diagrams that describe the evolution of a process
with time. If there is more than one Feynman diagram for a process, each diagram
shows the contribution of one possible intermediate state to the interaction. The
order of perturbation theory with which any diagram is associated is equal to the
number of vertices in that diagram, and each line refers to one real or virtual
particle in the process. The matrix element (in the quantum-mechanical sense)

* Research sponsored in part by the Air Force office of Scientific Research Ofhce of Aerospace
Research, U.S. Air Force, under AFOSR Contract No. F44620-68X-0075, and in part by the
National Science Foundation. Computer time supported in part by the Stanford Artificial In-
telligence Project under the sponsorship of the Advanced Research Project Agency of the Ofiice
of the Secretary of Defense (SD-l 83).

t Alfred P. Sloan Foundation Fellow. Present address: Department of Physics, University of
Utah, Salt Lake City, Utah 84112.

280

ANALYSIS OF FJZYNMAN DIAGRAMS 281

which corresponds to any diagram can be derived unambiguously from the diagram
by the application of a well-defined set of rules [2]. The total matrix element for a
process with given initial and final states is equal to the sum of matrix elements for
all the diagrams with those initial and final states.

In quantum electrodynamics, where perturbative expansions in the fine-structure
constant have so far proved to be sufficient for the interpretation of any experiment,
simple application of Feynman rules for diagrams can lead very quickly to large
numbers of terms in the matrix elements. Further, the number of terms or diagrams
that must be considered for accurate interpretation of an experiment rises rapidly
with either the characteristic energy or momentum transfer used, and probably even
more rapidly when particles of high spin can enter into a process. Thus, manual
calculations of interest for present high-energy experiments, particularly at the
20-GeV Stanford linear accelerator, can easily get out of hand, and some form of
mechanized computation is essential if the results are to be obtained accurately
within a reasonable time.

The need for automated computation was first recognized for traces of products
of Dirac matrices and four-momenta in quantum electrodynamics. Several authors
have programmed this self-contained problem in various combinations of machine
code and FORTRAN ([3], [4], [5], [6], [7], [8], [9]) or LISP ([lo], [I 11). Two of the
programs ([6], [lo]) have developed into general symbol-manipulating schemes
whose scope extends beyond theoretical physics. However, the evaluation of traces
is first carried out, in general, after a matrix element has been obtained and squared,
and is used for reduction of the absolute square to a simplified quantity, such as a
cross-section or polarization for comparison with experiment. In many cases, it is
also difficult to proceed from basic quantum field theory through Feynman
diagrams to a matrix element. That procedure cannot be defined as succinctly as
the trace calculation, so that it has received less attention in the past. Because
FORTRAN is not flexible enough for the task, and machine code in large volumes
is tedious to write, programs ([lo], [121) that have analyzed Feynman diagrams
have been written in the symbol-manipulating language LISP 1.5 [13]. While some
of the results that they have produced have been discussed in papers which have
emphasized questions of theoretical physics, there has been no previous detailed
account of the programming techniques involved. This paper is intended to Cll that
gap and report the most settled conclusions of our work on the subject since the
first announcement of work in this area in 1964 [14].

We begin in Section 2 with a description of basic LISP and the syntax we shall
use in later sections. In Section 3 there is a discussion of how Feynman diagrams
are represented in the computer, and how properties are assigned to lines in
diagrams. Section 4 covers the synthesis of Feynman diagrams from quantum
field theory with the help of Wick’s theorem. The derivation of unsimplified matrix
elements from diagrams is analyzed in Section 5. The two principal problems of

282 CAMPBELL AND I-EARN

simplification of matrix elements are where to make judicious use of Dirac matrix
algebra to avoid excessively long results, and how to recognize the integrals that
arise if a diagram contains sets of lines that form closed loops. We present the
programming methods that we have applied to these problems in Sections 6 and 7,
respectively. In Section 8 we discuss the relatively short operation of squaring of
matrix elements, which is the last step in the analysis based on Feynman diagrams,
before the computed expressions are turned over to other programs which per-
form traces and a final general simplification. We adopt the view that the expres-
sions produced by our programs should be in a form acceptable to any general
symbolic simplifying program, which need not be written in LISP. The paper
concludes in Section 9 with a survey of heuristic methods that we either have used
for specific problems or believe will be needed for the treatment of future problems.

Although we have referred above to quantum electrodynamics, our programs
can deal equally well with other interactions that are represented graphically by
Feynman diagrams. In those cases, one is generally not interested in calculation
because of a naive view of perturbation theory, which may not even lead to a con-
vergent answer, but because of assumptions that only a few possible intermediate
states dominate a process, or that the structure of singularities for an exact matrix
element can be deduced or guessed from the singularities of low-order terms in a
divergent perturbative expansion [15].

We have included examples of parts of programs in the text where they can
illustrate a point well and are only a few lines long. Not all examples are exact
renditions of extracts from the programs; occasionally, we write a simplihed
example to save space and make the discussion more readable. Exact LISP delini-
tions of the algorithms that form the backbone of the programs are given, with
explanatory headings, in Appendix 1. Appendix 2 contains some heuristic proce-
dures to which we have referred in Sections 4 and 9. Because the detailed programs
are long and probably of interest to fewer people than the total number of readers
of this paper, we do not include the Appendices with this paper. They may,
however, be obtained on request from the authors.

If we use the name of a LISP function without quoting its definition, it is a func-
tion that is a regular part of a LISP system. Descriptions of some of the simplest
basic functions occur in Section 2, but other sources of description are the LISP
1.5 Programmer’s Manual [13], Weissman’s introductory LISP textbook [16] and
a recent article [17] presenting a standardization of the various LISP dialects now
available.

2. A LANGUAGE FOR THE DEXRIFTI ON OF PROGRAbS

Apart from a few short functions written directly in machine code, all the pro-
grams discussed in this paper are written in Standard LISP [17], a uniform subset

ANALYSIS OF FEYNMAN DIAGRAMS 283

of the list-processing language LISP ([13], [16]). Since the average user of the pro-
grams should not be required to know LISP, we have designed their input facilities
so that he may write commands to perform general operations in a notation which
resembles ALGOL ([18], [19]). The first examples of commands of this type are
given in Section 3b. Similarly, it is possible to write symbolic data in a notation
consistent with ALGOL or FORTRAN, e.g., (A + B)** 2 for (a + b)z. However,
in this paper we are concerned with the manipulation of data inside the programs
themselves, for which we need to outline the basic elements of LISP. Information
is represented internally in the computer by LISP S-expressions, which we introduce
below without a complete syntactical definition. We reserve the detailed syntactical
discussion for the LISP ‘meta-language’, which we shall use in subsequent sections
to describe the behaviour of the various sections of the system and generally to
make statements about the behaviour of S-expressions.

The basic building block for S-expressions is the LISP atom. An atom is either
a number or is nonnumeric. A nonnumeric atom is called a literal atom and is
defined to be a string of capital letters, decimal digits and special characters such
as +, *, (but not a period), the first character of which is a letter. In principle,
atoms may be of indefinite length, but various implementations limit the number
of characters allowed. For this reason, we limit ourselves here to atoms of twenty-
four characters. Examples of literal atoms are

A X*+ A2B3C5. , 3

Numeric atoms may be in fixed or floating point mode, signed or unsigned as, for
example,

2. -1.23, +3.E-6,0.5.

All nonatomic S-expressions may be written in dot notation. The simplest types
are constructed directly from atomic symbols and the delimiters ‘(‘, ‘)‘, and ‘.’ as,
for example,

gr - Y)-

As numbers arc atoms and may, therefore, be used as constituents of dotted
pairs, it is essential for the pairing period to be set off by one blank on each side to
avoid confusion between, for example,

(1.2)

the number 1.2 enclosed in parenthesis,
and

(1 .a

284 CAMPBELL AND HEABN

Similarly, a number cannot begin with a period; 0.5 is a legal LISP atom, but .5 is
not.

In general, an S expression is either an atom or any structure which consists of a
left parenthesis, an S expression, a period, an S expression, and a right parenthesis,
in that order. Briefly, we can write

<S expression) : : = (atom>l((S expression) * (S expression>) cw

Equation (2.1) is an example of syntactic delhrition in Backus normal form [19].
In this notation, we introduce the special symbols ‘: : =‘, ‘(‘, ‘)‘, and ‘ 1 ‘. Equation
(2.1) means that an S expression is either an atom or is a left parenthesis followed
by an S expression, a period, another S expression and right parenthesis, in that
order. The vertical bar is the logical connective ‘or’, and the angular brackets
always enclose elements of the syntax that are being defined. Other combinations
of symbols stand for themselves.

Using Eq. (2.1), we can build up S expression structures such as

((APPLE . 1.2) . ((X .2) . F*)),

but in such examples the problem of placing all periods correctly, rapidly gets out
of control. Periods are not a natural feature of list structure, which ideally should
have a form like (A (B C) D (E F) G), for example. In LISP, this is made possible
by introduction of the special atom NIL which acts as a terminator of lists, and
which can be suppressed in input and output if it occurs as the second member of
any dotted pair. We then have the formal equivalence

(X . NIL) = (X) (2.2)

If we add a new element to an existing list by the prescription Eq. (2.2), the result-
ing S expression can be simplified by a second important equivalence

(X.07) = (XV (2.3)

There is of course no reason why every dotted pair should have NIL or a list as its
second member, and it is, therefore, possible to mix both dot and list notation in
the same S expression. The legality of the S expression can always be tested by
conversion to dot notation throughout using Eqs. (2.2) and (2.3), and then com-
parison of the resulting structure with Eq. (2.1).

Equations (2.2) and (2.3) deal with the LISP atoms X, Y, and NIL. However, in
discussing conversion of dot to list notation, we can interpret X and Y to stand for
arbitrary S expressions. Therefore, there is an ambiguity in the meaning of the
equivalences. To resolve the ambiguity, we need in addition to the programming
language which contains S expressions a language in which we can make statements

ANALYSIS OF FEYNMAN DIAGRAMS 285

about the manipulation of S expressions. This is the LISP meta-language. In
contrast to S expression atoms, which stand for themselves and include uppercase
alphabetic characters, atoms (‘names’) in the me&language are written in lower-
case form. In the meta-language, Eqs. (2.2) and (2.3) become the unambiguous
forms

[Y . NILI = [YI (2.4)

and

lx * EYII = hY1 (2.5)

NIL always stands for itself, so it remains in uppercase letters.
The basic parts of the meta-language which we shall use are:

(letter): : = a] b I c] z
(decimal digit): : = 1 12 1 j 9 IO
(blank space): : = (2.6)

The “name”, the me&language equivalent of the atom, can be defined in two
stages:

(partial name): : = (blank space) I
(letter)(partial name) I
(decimal digit)(partial name)

(name): : = (letter)(partial name} (2.7)

NIL in Eq. (2.4) is effectively a constant. We can include such constants in a
definition of the meta-language by writing

(constant) : : = (S-expression) (2.8)

Variables, by contrast with constants, may be represented by any name in the
meta-language. Hence, we have

(variable): : = (name) (2.9)

Bearing in mind the equivalence between dot and list notation in Eqs. (2.4) and
(2.5), we can deGne the me&language analogue of the S expression from Eq. (2.1):

<M-expression}: : = (name) I
[(M-expression) . (M-expression)] (2.10)

The syntax defined by Eqs. (2.4) to (2.10) is sufficient for examination of
items of data in LISP. For any M expression, like [a;b;c], manipulation requires

286 CAMPBELL AND HEARN

three basic operations-one which recovers the first element from the list, one
which produces the remainder of the list, and one which adds an element to the
existing list. The names of these three operations are car, cdr, and cons, whose
effects are as follows:

car[[a;b;c]] = a
cdr[[a;b;c]] = [b;c]
cons[a;[b;c]] = [a;b;c] (2.11)

Operators such as car, cdr and cons are calledfwzctions. In addition to these, the
LISP language contains several other basic functions whose definitions are in
machine code, outside the scope of the meta-language. Two such functions are the
predicate functions atom and eq. These are predicate functions in the sense that
their values are always truth values, ‘true’ being represented by the LISP atom T,
and ‘false’ by the atom NIL. For example,

atom[u]

has the value T if u is an atom, and NIL, otherwise. Similarly, if u and v are atoms,
then the function

eqbwl
is true if u is the same atom as v and false, otherwise. To test for equality of general
S expressions requires a more complicated function equal, whose definition can be
given in the meta-language and may be found in the cited LISP references.

We are now in a position to define more complicated functions in terms of the
basic functions car, cdr, COIZS, eq and atom. A general LISP function has a name, a
list of arguments, and a definition. To specify a function definition and complete
our description of the LISP me&language we write

(form): : = (constant) I (variable) 1

(function)[(argument);...;(argument)]l
if (form> then (form) else (form)

(list of variables): : = [(variable) ; (variable);...;(variable)]

(argument>: : = (form)
and (function): : = (name) I h [(list of variables); (form)] (2.12)

The syntax presented here, which is adequate for the purposes of this paper, is a
subset of those definitions found in Ref. [13] and [20]. The h in the defhrition of
(function) is a convention fkst proposed by Church [21] as an identifier for a list
of arguments in the specification of a function.

ANALYSIS OF FEYNMAN DIAGRAMS 287

The use of Eq. (2.12) in defining new functions is best seen by several examples.
First, it is often necessary to make multiple applications of the functions cur and
cdr to a list to obtain a certain part of that list. Thus, we can introduce the function

cadar [u] = car [cdr [car[u]]] (2.13)

Compound calls of cur and cdr up to four applications are allowed in Standard
LISP, and abbreviated by sandwiching the relevant a’s and d’s between a single c
and r as in Eq. (2.13).

Another simple function tests for the atom NIL, and is, therefore, useful in
determining the end of lists. This is a predicate function defined by

null[u] = eq[u ; NIL]. (2.14)

The alternative if, then else construction in Eq. (2.12) permits the expression of
a finite number of possible values for the function. Its general form, known as a
conditional expression, is

if pl then e, else ifpz then e2 a--- else en .

Each pi stands for a predicate function with an argument or arguments. The form
is to be scanned from left to right until one PI is found whose value is true. The
value of the entire expression is then the value of the corresponding ei . If no pi is
true, the value of the expression is en . As an example, consider the one-dimensional
step function, whose value is zero if its one numerical argument is negative, one if
the argument is positive, and 0.5 if the argument is zero. In the meta-language, its
delmition is:

step [n] = if minusp[n] then 0.0
else ifzerop[n] then 0.5
else 1.0

(2.15)

A specification in terms of a conditional expression may be used to display the
very powerful LISP feature of recursion, i.e., the definition of a function in terms
of itself. Suppose that we wish to write a function which reverses the elements in a
list. We can define it in terms of an auxiliary function revl as follows:

reverse [u] = rev1 [u; NIL]

rev1 [u;v] = if null [u] then v else rev1 [cdr [u];cons [car [u];v]] (2.16)

It is an instructive exercise to let u = (A B C) and carry through the operation of
Eq. (2.16) by hand. The function finally terminates, because (A B C) is equivalent
to (A . (B . (C . NIL))).

288 CAMPBELL AND HEARN

Most of the standard numerical operators occur as machine-coded functions in
the basic LISP language. However, in LISP, numerical and general algebraic
expressions are usually written in prefix form rather than the standard mathemati-
cal infix notation. Thus, the expression

1.2 + 3.4 * 5

is written in S expression form as

(PLUS 1.2 (TIMES 3.4 5))

or in M expression form as

plus [1.2 ; times [3.4 ; 511.

The alphabetic notation for the operators + and c is used since the standard
mathematical operators are not legal LISP atoms.

We now consider two extensions of the language which are particularly useful
in many applications. First, we are permitted to use functional arguments in
defining functions. Thus, if we want to apply a function f to every member of a
list [u;v;..] to obtain the result [f[u];f[v];..], we can use the function defined by
maplist [u;f] = ifnull [u] then NIL else cons [f[u];maplist[cdr[u];fl].

Secondly as an alternative to the recursive definition of functions as in Eq. (2.16),
it is sometimes more convenient to define a function by an iterative sequential
program using the LISP program feature. An iterative version of Eq. (2.16) is

reverse [u] = prog [[xl; A; ifnull [u] then return [xl;
x: = cons[car[u]; x]; u:= cdr[u]; go [A]] (2.17)

This definition displays all the special parts of the program feature. prog has an
indefinite number of arguments, the first of which is a list of program variables
used inside the program feature. These variables are initially set to NIL. The use
of go, return and labels such as A is evident by inspection of Eq. (2.17). The infix
operator : = sets its tirst argument to the value of the second argument. The
particular property that conditional expressions do not require a terminating else
clause within a program feature is also shown.

Three other simple functions which we shall often use in the definitions of more
complicated functions are member, append and delete. member [a;b] is a predicate
whose value is T if a is a member of the list b and NIL otherwise, deZete[a;b] has a
value equal to b from which the first occurrence of a has been deleted and
append[a;b] combines two list structures a and b into a single list. These functions
are easy to define in meta-language, and the reader is recommended to do this
for himself before proceeding further.

ANALYSIS OF FEYNMAN DIAGRAMS 289

Another important part of the language which we shall make much use of is the
concept of the property list of an atom. Each LISP atom has its own private list of
properties, on which we can record attributes. For example, if we use PI to re-
present the four-momentum of an antiparticle in a calculation in particle physics,
we can put a label (a ‘flag’) ANTIPTL on the property list of this LISP atom, using
the function Jlag. In practice,

flag[x;ANTIPTL] (2.18)

places the flag ANTIPTL on the property list of each atom in the list x. We can
later test for the presence of this flag by using the predicate functiongagp. More
generally, if the attribute which we wish to assign to the atom has a range of values,
we can place on its property list an indicator followed by the relevant value. For
example, if we wish to assign a value EM to the attribute MASS of the atom Pl, we
can use the function put as in

put [Pl;MASS;EM]. (2.19)

A function dejlist is also available for putting various masses, say, on different
atoms, as in

deflist [((Pl EM) (Ql WMU) (K 0)) ; MASS]. (2.20)

As we see in this example, the first argument of deflist is a list of pairs of the respec-
tive atoms and properties. A function of two arguments which is an inverse of
put in the sense that it can be used here to recover the mass value of any four-
momentum is get. In this case, for example,

get[Pl;MASS] = EM. (2.21)

Finally, we note in passing that all variables which have occurred in function
definitions so far are local to the relevant function. It is also often necessary to
carry information between functions, and for this purpose global variables are
used. Such variables will be indicated as they occur in the remaining sections.

This concludes our summary of the LISP language. It is by no means complete,
and the interested reader is referred to the cited references for more details. In
particular, we have not discussed the translation between the me&language
definition of a function and its S-expression equivalent, which is the form in which
the program is given to the computer. This translation process is unique and may,
therefore, in fact be performed by the machine itself if suitable means for represent-
ing the necessary characters are available. In particular, our M-expression function
definitions in the Appendices were produced by machine from their S-expression
counterparts, and we are grateful to Mr. W. Weiher of the Stanford Artificial
Intelligence Project for providing the program for doing this.

290 CAMPBELL AND HEARN

In subsequent sections, we shall adopt the following conventions. Specimens of
data and material illustrating actual input and output from a program will be
written in an ALGOL-like form or as S-expressions. Examples of definitions of
functions and parts of the programs will be given in the meta-language.

3. REPRFSENTATION OF DIAGRAMS

(a) General

An elementary particle process is represented in Fig. 1. It shows a set of particles
entering an interaction region and another set emerging. Those particles are cha-
racterized by various properties such as momenta, mass, spin, charge and so on,
and there exist various laws and selection rules applying to these particles and their
interactions which specify whether such a process is physically possible. For
example, conservation of momentum requires that the sum of incoming momenta
equal the sum of outgoing momenta.

FIG. 1. An elementary particle interaction. pI , ps etc. represent the four-momenta of electrons
and kI , kr etc. the four-momenta of photons.

It is often possible to describe such a process in terms of a set of diagrams or
graphs which formally represent the development of the process with time. Various
methods have been devised, principally those of Feynman [l], to compute the
contribution of such diagrams to any physically measurable quantity. Feynman’s
technique may be summarized as a set of rules for computing physical cross-
sections and related quantities directly from a set of diagrams. A typical set of
diagrams for the process in Fig. 1 is shown in Fig. 2.

It is our aim in this section to show how such diagrams may be represented in a
form easily manipulated by a computer and, hence, how the various structural
properties of the diagram may be found. We emphasize that this description
involves general principles which are applicable in many fields outside of elementary
particle physics; in particular, precise analogies between the analysis of the
structure of Feynman diagrams and electrical circuits have been made [22].

ANALYSIS OF FEYNMAN DIAGRAMS 291

The number of vertices in a diagram defines the order of the diagram. It is
possible in principle to generate automatically all possible allowed diagrams for
a given process at a given order by specifying the particle types and interactions
allowed. In practice, however, difficulties arise, for example, in recognition of
topologically equivalent diagrams. We examine the problem of generation only in
outline in this paper, in Section 4.

yKJjA& ‘-“;(;2p ;JQ3:
Pl A P3 P4 P2 PI P5 P4 P2 Pl P5 P6 P2

L&z3 ylK&.+& *3

Pl P3 P7 P2 Pl P8 P7 P2 Pl P8 P6 P2

FIG. 2. Second order Feynman diagrams for the process in Fig. 1.

We shall, therefore, consider as input a set of diagrams describing a particular
process. Our first aim is to specify those properties of the diagrams which are
needed for calculation of any properties of physical interest.

We represent the vectors or momenta of the diagram by atoms. Although the
components of the vectors have physical relevance, it is unimportant as far as
graphical properties are concerned to show this explicitly. We shall give all vectors
in a diagram an explicit orientation. Following standard practice, fermions, i.e.,
particles with half-integer spin such as electrons, protons, etc., must be oriented in
the direction in which the particle travels. We choose the orientation of particles
of integer spin to be in the direction of increasing time. To say that a particle
enters or leaves a vertex is now explicit, and we can associate with each vertex a
list of incoming vectors and a list of outgoing vectors. We define a vertex as a
dotted pair of these two lists. Thus, vertex A in Fig. 2 has incoming vectors p1 and
k, , an outgoing vector pS and a vertex representation ((Pl Kl) . (P3)).

Finally, we define a diagram as a list of vertices and aprocess as a list of diagrams.
The full representation for the first diagram in Fig. 2 is, therefore,

(((Pl Kl) . (P3)) ((P3) . (K2 P4)) ((P4) . (K3 P2))) . (3.1)

This representation of a process requires no definite ordering of vertices in the
diagram list or diagrams in the process list. Furthermore, all graphical properties
of the diagram may be found by simple scanning of the representation. For exam-
ple, those vectors internal to a diagram must occur in both the first half of one

292 CAMPBELL AND HEARN

vertex and the second half of another. Thus, the following set of functions will
compute the internal vectors of a diagram.

invectors[dia] = if null[dia] then NIL

else append[caar[dia]; invectors[cdr[dia]]]
outvectors[dia] = if null[dia] then NIL

else append[cdar[dia]; outvectors[cdr[dia]]]
allvectors[dia] = if null[dia] then NIL

else append[caar[dia]; append[cdar[dia]; allvectors[cdr[dia]]]]
repeats[x] = ifnull[x] then NIL

else ifmember[car[x]; cdr[x]] then cons[car[x]; repeats[cdr[x]]]

else repeats[cdr[x]]
intvectors[dia] = repeats[allvectors[dia]].

Similarly, the inputs to a diagram are those vectors which occur only in the first
half of a vertex and not in the second half. Thus, one definition would be

inputs[diagram] = setdiff[invectors[diagram] ; intvectors[diagram]]

where

setdiff[u;v] = if null [v] then u

else if member[car[u];v]then

setdiff[delete[car[v];u];cdr [v]]
else setdiff [u; cdr[v]]

This is not the most efficient definition of inputs, as invectors is computed twice
during the evaluation of inputs. However, as the evaluation of such properties takes
negligible time, we shall not discuss improvements here.

A complete list of functions for finding such properties of a diagram is given in
Appendix 1.

(b) Particle Properties

The various physical properties of particles in a diagram or process may be
conveniently included by using the property lists of the relevant atoms as described
in Section 2. For example, an ALGOL-like declaration of those atoms which
represent antiparticles is made by the function antiptl, as in

ANTIPTL P4, P5;

ANALYSIS OF FEYNMAN DIAGRAMS 293

The S-expression form of this statement would be

ANTIPTL ((P4 P5))

and so a suitable definition for ANTIPTL is

antiptl [u] = flag [u; ANTIPTL].

Masses of particles are included as properties of the relevant atoms with the flag
MASS. For example,

MASS Pl = EM, K = 0; (3.2)

assigns a mass EM to PI and mass zero to K. The S-expression form of this state-
ment is

MASS (((EQUAL PI EM) (EQUAL K 0)))

and so the function mass can either check for EQUAL explicitly, or assume its
presence as in

mass [u] = ifnull [u] then STAR else prog2 [put [cadar[u];MASS;
caddar [u]]; mass [cdr [u]]],

where the occurrence of the global atom STAR causes an asterisk to appear in the
output as a signal that the operation performed by muss is complete. We note with
this definition that any binary operator may be used in (3.2) in place of the equality
sign. In addition, it is preferable to use symbolic representations of masses tither
than numerical values (except for the obvious case of zero), as our aim at this stage
is to keep all expressions exact and, thus, be aware of explicit cancellations when
they occur.

The procedure employed in specifying spins of particles is a little more compli-
cated. Particle spin may be an integer or half-integer, depending on whether the
particle is a fermion or boson. A call of spin in infix form may, therefore, have the
structure:

SPINPl = l/2, Ql = 0;

which, translated, reads

SPIN (((EQUAL Pl (QUOTIENT 12)) (EQUAL Ql 0)))

The function spin is designed to scan such a list, add the integer part of the spin to
the property list of the respective atom with the flag SPIN, and also add the tlag
FMN to any atoms which have half-integer spin. The code for this function and
other functions which add such properties to particle atoms is given in Appendix 1.

294 CAMPBELL AND HEARN

(c) Specification of Fermion Paths

In our particular application to physical problems, it is necessary to trace out
more detailed structure of a diagram than simply a specification of inputs, internal
vectors and so on. In particular, as a preliminary to computing Feynman matrix
elements for a process, we need to know all fermion paths in a diagram.

Because of our orientation convention for fermions, there are only two cases
which need be considered:

(i) fermion paths which terminate in the outputs of a diagram
(ii) fermion paths which are completely internal to a diagram

We begin by determining paths of the first kind. Rather than give the complete
code as we go, however, we shall outline the method used and refer the reader to
Appendix 1 for a complete specification.

We begin by finding all fermions in the outputs of a diagram. (These are recogni-
zed, of course, by the flag FMN on their property lists.) We then follow each of
these fermions back through the diagram to its initial point, determining first the
vertex the particle came from, and then the appropriate continuation of the fermion
line. This procedure is then repeated until the line terminates.

Next, to compute those fermion paths completely internal to the diagram, we
take all those fermions encountered in the first pass and subtract them from all
fermions in the diagram. The residual fermions must constitute closed loops (unless
an error has been made in specifying the diagram), and we can, therefore, start with
one of these fermions and trace a closed path back from that. This procedure can
then be repeated until all fermions in the residual lists are exhausted. The relevant
function which determines all these paths is fpaths, whose definition, together with
the associated functions used in its calculation, is given in Appendix 1.

Finally, as preparation for the computation of matrix elements, we need to
recognize the remaining lines and vertices in the diagram. This is computed by the
function bospart using the information found by fpaths. Alternatively, the complete
spectication of the physical structure is found using allpaths, which computes a
dotted pair of the fermion paths in the diagram and the remainder.

(d) Conservation of Momentum

Another physical property of Feynman diagrams which we need to consider is
the law of conservation of momentum. This law requires that the sum of all in-
coming momenta be equal to the sum of all outgoing momenta, for each vertex, and
also for the overall process. Thus, the law specifies that one external vector may be
replaced in terms of all other external vectors and, furthermore, that if there are
no closed loops in a diagram, then all internal vectors may be written in terms of
external vectors.

ANALYSIS OF FEYNMAN DIAGRAMS 295

If closed loops are present in a diagram, then the replacement process is not so
straightforward. The standard method, which we follow here, is to associate a
loop momentum with each independent closed loop. This loop momentum will be
in fact one of the momenta bounding the relevant loop.

The procedure we use in applying the law of conservation of momentum is to
develop an association list expressing replacements for all internal vectors of a
diagram, and for one external vector. The function which performs this procedure
is momrep, and again we specify the procedure followed in words, giving the full
code for the calculation in Appendix 1.

We divide all vectors in a diagram into two classes; ‘solved’ and ‘unsolved’.
Initially, the solved vectors are the independent external vectors plus one external
vector expressed in terms of the others, and the unsolved vectors are the internal
vectors. Each internal vector is then examined to see if it can be expressed com-
pletely in terms of solved vectors at either its incoming or outgoing vertex. If it can,
it is transferred to the solved vector list. After all unsolved vectors are examined, a
check is made to see if any vectors were ‘solved’ in that pass. If so, a new search of
the unsolved vectors begins. If not, the system is recognized insoluble, and a
message

*** LOOP VARIABLE (variable) NECESSARY

is printed, (variable) being the first member of the unsolved vector list, which is
then transferred to the solved list. This procedure is continued until all vectors are
solved.

In some cases it is desirable to specify the loop vectors in advance. The declara-
tion loopvar defined in Appendix 1 adds its argument, a four-momentum to a
global variable LPVAR, and then transfers it to the solved vector list at the
beginning of the application of momrep. For example,

LOOPVAR QA;

adds QA to the solved vector list.

4. GENERATION OF FEYNMAN DIAGRAMS

It is convenient to regard the final quantum-mechanical state of a system of
interacting elementary particles as obtainable from the initial state by the applica-
tion of an operator, the S matrix, which describes the interaction of the particles.
In terms of a Hamiltonian H(x) of interaction which is a function of the space-time
variable x and its time component x0, and in natural units, the S matrix is

s = g k$ j-“, @xl lIrn d4x, a-- ,1 ddx,, P[H(x3 I-I&) -*- Wdl, (4-l)

296 CAMPBELL AND HEARN

where P is the chronological ordering operator which rearranges the n terms in its
argument into a form

H(xi)H(xj)H(xr) . . . such that xi0 > xj” > xk”

Since H(x) is proportional to the coupling constant for the interaction, each term
in the sum in (4.1) describes the transition between initial and final states by all
possible Feynman diagrams with n vertices. H(x) is a product which contains as
many interacting fields as there are particles that are permitted to interact at any
vertex. Moreover, because the interpretation of a field quantity as an operator
identifies parts which are used as creation and annihilation operators for individual
particles, it is possible to trace out the history of any particle within the set of
vertices of any Feynman diagram. Details of the formalism can be found in
standard texts ([2], [23]).

The practical problem is the reduction of the product of operators in (4.1) to a
form which makes identification of all of the distinct Feynman diagrams (for the
purposes of calculation of matrix elements in momentum space) of a given order as
easy as possible. Here, the reduction is done in three stages. First, we write Wick’s
chronological ordering operator T, which is equal to P(n) except for a multiplying
factor that is 1 if the permutation of fermion fields that is necessary to turn the
product 7r into P(m) is even and - 1 if the permutation is odd. Hence, P in (4.1) can
ultimately be expressed in terms of T. Second, we introduce the contraction A’B’
of two factors and the normal product N according to

T(AB) = A’B’ + N(AB)

The particular distinction of N is that it causes all creation operators in its argu-
ment to fall to the left of all annihilation operators. Finally, we use Wick’s theorem
[24], which tells us that a T product can be decomposed uniquely into a sum of
normal products as

where

T[N(A,B,C,...X,Y,Z,)N(A,B,C,...X,Y,Z,)1 = fifi ,

fi = N(A,B& . ..X.YIZ,)+N(A;B;C, . ..X.YIZ,)

+ N(A;B;‘Cr . ..XrY.‘Z;) +N(A;B;‘Ci” . ..XiYi’Zi”) (4.2)

and each possible combination of pairwise contracted factors occurs once in the
sum of normal products above.

If a contraction in (4.2) is made between a creation operator function of xi and
an annihilation operator function of xi , where x10 > xi”, it may be understood to
represent a line for the appropriate particle beginning at vertex i and ending at the

ANALYSIS OF FEYNMAN DIAGRAMS 297

later vertex j of a Feynman diagram. Uncontracted creation operators in a normal
product refer ANALYS42 21-r be associated with uncontracted annihilation operators.

Equation (4.2), which is discussed in some detail by Bogoliubov and Shirkov [25],
is the basis of a short subprogram to derive Feynman diagrams in the representa-
tion (3.1). The association just described between field operators in (4.2) and lines
in Feynman diagrams relies implicitly on the substitution of (4.2) into (4.1) and the
relation of each term in the resulting expanded form of S to a single Feynman
diagram.

The program is designed to generate only diagrams for one order of perturbation
theory, or value of n, at a time. The programmer declares this order by the
command

VERTICES n;

where n is a positive integer. The equivalent LISP function is:

vertices[n] = prog2[ord := n; skn := skp[n;l]],

where

skp[n;m] = z~greaterp[m;n]ttzen NIL
else cons[list[m;NIL;NIL];skp[n;addl[m]]]

The global variable ORD is carried through the calculation for reference, and
SKN represents the skeleton of a Feynman diagram with vertices numbered.
Initially, as set up by skp, it has the structure ((1 NIL NIL) (2 NIL NIL)......). Lines
entering any vertex are recorded on a list which is the second member of the relevant
sublist, and lines leaving the vertex are listed in the third position of the sublist.
Later, when the calculation of a diagram is complete, the vertex numbers are dis-
carded and the rest of each sublist is changed into a form equivalent to that of (3.1).

Free use of (4.2) generates three classes of Feynman diagrams, only one of which
is usually needed. The unused diagrams represent either vacuum fluctuations (and
therefore have no external lines) or two or more disjoint processes with a total of
n vertices. Output of these diagrams is suppressed by the initial commands

and

VACUUM NO;

DISJOINT NO;

which effectively close off the printing branch of the program to vacuum fluctua-
tions and disjoint processes. The functions vacuum and disjoint are listed in Appen-
dix 2. On the rare occasions when either of these types of diagram is wanted, the

5W5b9

298 CAMPBELL AND HEABN

appropriate command is used with any other argument that signifies approval
(e.g., YES).

In many situations, the user of the program may wish to have particular labels
for the four-momenta of the ingoing and outgoing particles that are present in the
diagrams which are generated. Two declarations are provided for that purpose:
INITIAL for the inputs and FINAL for the outputs. Use of these declarations is
optional, but it is compulsory in all applications of the diagram-generating program
to make the initializing statement

INOUT ;

which sets up certain internal lists. At present the programmer may choose labels
for fermion lines from the atoms PI, P2 . . . and labels for boson lines from the
atoms Kl, K2 Then, after the INOUT declaration above, suppose that we
select PI and Kl as labels for two inputs to our diagrams, and P2 and K2 as out-
puts. The appropriate statements to establish this selection are:

and

INITIAL PI ,Kl ;

FINAL P2,K2;

The atoms PI, P2, Kl and K2 are thus reserved for external lines of the generated
diagrams.

The final command, which starts the actual calculation, makes use of the
function interaction. Its argument is a list of the factors that occur in the chosen
expression for H(x), with a few arbitrary conventions. The interacting fields are
the sole quantities of interest in the construction of Feynman diagrams, so that
their important attributes must be represented in some detail. Other quantities, like
coupling constants and Dirac matrices, are unimportant here. We make the con-
vention that the unimportant quantities should be given as atoms in the argument
of interaction, and the interacting fields by lists of their important attributes. For
the simple cases so far considered, these attributes identify creation operators and
spins or statistics. We, therefore, represent a field by [a;b] where a is 1 if the field
operator creates a fermion and 0, otherwise, and b is 1 for a fermion field and 0 for
a boson field. Hence, for the often-used example of a local vector interaction
between an electron field Y and a photon field A, according to a relation like
H(x)=ep(x)y,Y (x)A, (x), a LISP representation of the argument for interaction is

(E (1 1) GAMMA (0 1) (0 0)). (4.3)

At present the atomic members of (4.3) have mnemonic value only, because the
first step in interaction is a call to a function nonatom which simply removes all

ANALYSIS OF FFiYNMAN DIAGRAMS 299

atoms from the argument. However, the convention can be altered in the future
if the program is expanded to perform more sophisticated operations than just
the generation of the structure of a Feynman diagram.

Next, a label from the list (Ll L2) is associated with each field or particle
in the argument of interaction, and the function dinit is called to produce a list of
dotted pairs of particle labels and vertex numbers. For example, if the argument is
as given in (4.3) and the order n is 3, the list is

((Ll . l)(L2. l)(L3 . l)(Ll .2)(L2 . 2)(L3 . 2)(Ll . 3)

(L2 . 3)(L3 . 3)). (4.4)

The process of contraction in (4.2) collects all possible pairings of elements of (4.4).
This operation is controlled by the important function contract, of which a simpli-
fied definition is

contract[y]=prog[[a;b;c;d];c:= cpairs[y];G;a:=comb[a];
if null[a]then return[NIL];d:=items[a;c];
b:=setdiff[y;roll[d]];generate[cons[d;b]];go[G]],

where

roll[u]=z~null[u]then NIL else cons[caar[u];cons[cadar[u];

roWdrb1111,
items[u;v]=z~null[u]thezz NIL

else cons[item[car[u];v];items[cdr[u];v]]

and item[n;u]=ifonep[n]then car[u]eZse item[subl [n];cdr[u]].

The function cpairs produces the physically possible pairings from (4.4). Each
pairing that is combinatorially possible is examined by the subsidiary function
crule, which discards the large number of pairs that have the interpretation that a
particle changes its spin, starts and terminates at the same vertex, or is not created
at one vertex and annihilated at a later vertex (i.e., on one with a higher vertex
number). Each of the remaining pairings is then selected in turn by the function
comb. The set-theoretic difference of a structure like (4.4) and the elements of each
pairing is regarded as a list from which the external lines of one Feymnan diagram
are derived. Finally, contract calls generate with this information, and the latter
function uses it to build the Feynman diagram upon the structure of SKN. Line
labels are selected from the lists (Pl P2 P3.....) for fermions and (Kl K2 K3.....) for
bosons. The actual addition of new lines to the diagram is performed by add, which
is called by generate. The last step of the latter function is to print each diagram
when it is formed.

300 CAMPBELL AND HEARN

The discussion of the basic algorithm is now complete. Other functions which
occur in Appendix 2 but are not described here are not essential to the discussion,
and merely carry out various types of bookkeeping.

The program for the generation of diagrams is not listed in Appendix 1 along
with the regular programs because it does not fit into them smoothly. In partic-
ular, while it produces diagrams in the style of (3.1), it does not assign attributes
like mass and polarization to momentum atoms, and it does nothing about the
assignment of rules for the treatment of vertices by later programs. There is no
present reason why the programs are not joined smoothly except that physicists
who have used them have tended to think in terms of Feynman diagrams rather
than Hamiltonians of interaction for the initial statement of a problem. When the
order n of a problem is high enough, though, this reason must disappear, because
of the difficulty of writing down all the diagrams by intuition and without error. In
that case, the result of development of the diagram-generating program will
probably depend on the most popular problems which require solution.

5. COMPUTATION OF MATRIX ELEMENTS

(a) Preliminary

The application of the rules developed by Feynman [l] to determine physical
matrix elements from a given diagram is a good example of unique mapping of one
data space onto another. The rules which determine this mapping are easy to
specify, and the result of the mapping depends only on the properties of the par-
ticles and vertices in a diagram. There are two problems to be considered here;
first, the specification of the rules themselves and their resulting storage and,
secondly, the application of the rules to a given diagram.

(b) Specljkation of the Feynman Rules

A convenient summary of the Feynman rules is given by Bjorken and Drell[2].
In specifying these rules, and in the subsequent development, we shall use the
conventions and metric of Bjorken and Drell throughout. Thus, the four-momen-
tum of a particle is de&red by

P" = (J%~,,PY, pz)

and the scalar product of two four-momenta is

P~.PP=WL--P~.P~

The Dirac gamma matrices which we employ are defined in general by the
equation

YUY” + YYK = 2gw (5.1)

ANALYSIS OF FEYNMAN DIAGRAMS 301

which defines a set of hypercomplex numbers y in a space with metric tensor g,. .
In practice, we limit ourselves to a four-dimensional matrix representation of these
quantities defined in a space with metric

g,=-g,,=-g,,=-g,=landg,,=Oforp#v

We also need to specify symbols to represent the various special operators which
are encountered in these rules. The operators we introduce are as follows:

G

EPS
PROPR
U

UB
V
VB

scalar product of two four-vectors
gamma matrix operator
completely antisymmetric tensor of order 4

denominator of propagator
fermion spinor
conjugate of fermion spinor

fermion spinor for an antiparticle
conjugate of fermion spinor for an antiparticle.

A description of these operators is as follows:

(9

The operator is a binary operator used to denote the scalar product of two
Lore& four-vectors. Its arguments are vector expressions, e.g.,

P.Q , (P- P.K*K/K.K).(R + S).

As we mentioned earlier, components of vectors in diagrams are not
explicitly displayed but, if ever needed, they may be indicated with the inclusion
of representations of unit vectors in the system. Thus, if EO represents the unit
vector (l,O,O,O), P*EO represents PO, the zero-th component of the four-vector, P.
Similarly, an arbitrary component P” may be represented by P-MU. When
contraction over an index is required, the system has to be informed that MU,
for example, represents an index rather than a four-vector. To achieve this,
indices are added to a global variable INDICES, either explicitly by the system,
or indirectly by the user with the function

index[u] = indices := append[u;INDICES]

Thus

INDEX MU, NU;

302 CAMPBELL AND HEARN

would inform the system that MU and NU are indices to be contracted in expres-
sions involving them. The index status of atoms may be removed by the user with
the function

remind[u] = indices := setdiff[INDICES;u]

(ii) G

The operator G is an n-ary operator used to denote a product of gamma matrices
contracted with Lorentz four-vectors. To allow for the occurrence of more than one
fermion line in a diagram, the first argument of G is a nonnumerical line-identifica-
tion variable used to distinguish different lines. Thus, G(Ll,P)*G(L2,Q) denotes
the product of y-P or P associated with a fermion line identified as Ll, and @
associated with another line identified as L2. A product of gamma matrices
associated with the same line may be written in a condensed form, thus:

The vector A is reserved in arguments of G to denote the special gamma matrix
y5 . Thus,

G(L,A) = y5 associated with the line L

and G(L,P,A) = p * y6 associated with the line L. The general matrix y,, associated
with a line L may be written as G(L,MU) with MU declared as an index if contrac-
tion over ~1 is required.

(iii) EPS

The operator EPS has four arguments, and is used only to represent the com-
pletely antisymmetric tensor of order 4 and its contraction with Lorentz four-
vectors. Thus,

%“PO = +l if p,v,p,u is an even permutation of 0,1,2,3.

- 1 in the case of an odd permutation

0 otherwise

A contraction of the form E,,mP,,q,, may be written as EPS(MU, NU, P,Q) with MU
and NU declared as indices, and so on.

(iv) PROPR

Whenever an internal particle of momentum p and mass m appears in a diagram,
there is a propagator denominator (p-p-m3 associated with it in the corresponding
matrix element. To avoid proliferation of rational functions, and for easier recog-

ANALYSIS OF FEYNMAN DIAGRAMS 303

nition of matrix element structure, we represent such terms by the binary operator
PROPR. In infix .notation, this is

PROPR(P,M) = I/(P.P-M**2) (5.2)

(v) U,UB, V and VB

These operators are used to represent spinors and their conjugates for particles
and antiparticles, respectively. They have two arguments, the first of which is a
line-identification variable, and the second of which is either a vector variable or
minus a vector variable. e.g., U(L,P) or VB(L2,-Ql).

The rules which are necessary for the complete specification of matrix elements
may be divided into three classes; those which apply to lines in a diagram, those
which apply to vertices, and those which apply to the general structure of the
diagram.

To specify a Feynman rule for an arbitrary line requires information on the type
of particle, and also whether it is internal or external to the diagram. Except for
the ambiguity between the photon and the neutrino, it is sufficient to identify a
particle by its status (external or internal) and mass to specify a rule uniquely. To
include the photon and neutrino in this scheme, we given them the symbolic masses
WLA and WNU, respectively, and make adjustments in the matrix routines so
that these symbols are replaced by zero when they occur in expressions, unless a
nonzero value is needed temporarily [12] as an infrared cutoff.

A general rule also contains information on the momentum, polarization vectors
and indices of the particle, which are not known at the time the rule is specified.
To allow for this, we use the atom MOM to represent the (dummy) momentum of
the particle, the index atoms INl, IN2...to represent indices, and POLl, POL2...to
represent polarization vectors.

In specifying rules for lines involving gamma matrices and spinors, we also use
the dummy line identification symbol LN as the first argument of the relevant
operators.

We must also establish standard names for at least the common particles, whose
Feynman rules will be defined initially in the system (but can be changed by the user
if he so desires). The following conventions will therefore be used in the remainder
of the paper and the system itself.

Particle Mass

electron EM
proton PM
neutron WNU
pion PIM
muon WMU

304 CAMPBELL AND HEARN

The artifices used above to avoid the apparently more natural labelling of mass
with M as the tist character are to provide compatibility with FORTRAN pro-
grams, where numerical values for masses are floating-point quantities.

A rule for a line in a diagram is, thus, specified in the form:

L((mass symbol), (status)) = (expression),

where

(status) : := EXT 1 INT

These rules are added to the system by the function frule, which we shall discuss
later. The rules for the common particles which are already in the system are
introduced as follows:

FRULE L(EM, INT) = I*(G(LN,MOM)+EM)*PROPR(MOM,EM),
L(EM, EXT) = U(LN,MOM),

L(PM, INT) = I*(G(LN,MOM)+PM)*PROPR(MOM,PM),
L(PM, EXT) = U(LN,MOM),
L(WLA, INT) = -IN1 . IN2 * PROPR(MOM,WLA),
L(WLA, EXT) = IN1 .POLI,

L(WMU, INT) = I*(G(LN,MOM)+WMU)*PROPR(MOM,WMT
L(WMU, EXT’) = U(LN, MOM),

L(PIM, INT) = PROPR(MOM, PIM),
L(PIM, EXT) = 1,

L(WNU, INT) = I * G(LN,MOM) * PROPR(MOM, WNU),

L(WNU, EXT) = U(LN, MOM);

J),

A specification of a rule for a vertex can be made in a similar way. Again, knowl-
edge of the masses of the particles at the vertex is sufficient for unique specification
of the rule. However, we now need to associate a momentum with each
particle and give it a direction. We, therefore, use the dummy labels
MOMl, MOM2, MOM3 ,.... for this purpose, associating MOM1 with the first
mass in the vertex list, and so on. The association is made unique by the require-
ment that the direction of each momentum be into the vertex. In a like manner,
variables which identify fermion lines will have names LNl, LN2,... and so on. In
both these cases, it is only necessary to associate at most one symbol with each
particle. However, in the case of spin indices, a given particle may have more than
one index, and, therefore, indices IN1 1, IN12, IN13, . . . are associated with the first
mass on the vertex list, IN21, IN22, . . . with the second mass, and so on. Vertex

ANALYSIS OF FEYNMAN DIAGRAMS 305

rules also require specifications of coupling constants and form factors. We adopt
the following conventions here and in the remainder of the paper:

Symbol Meaning

ER Rationalized renormalized electronic charge
(=(4?T/I 37)‘/2)

GR Rationalized renormalized pion-nucleon coupling constant
(=2(14.4rr)‘i2)

Fl Dirac electromagnetic form factor of proton
F2 Pauli electromagnetic form factor of proton, multiplied by

1.79/2M, where M is a proton mass.

We shall also reserve the variable I as the square root of - 1.
A rule for a vertex in a diagram is thus given in the following form:

V(<mass symbol), {mass symbolj,...,(mass symbol))=(expression)

Such rules are also added to the system by frule, and those already in the system
are introduced as follows:

FRULE V(EM,EM,WLA) = -ER * G(LN1, IN31),

V(WMU,WMU,WLA) = -ER * G(LN1, IN31),

V(PM,PM,WLA) = ER * (G(LNl, IN3l) * Fl(MOM3)
+ G(LNLMOM3) * G(LN1, IN31) * F2(MOM3));

The definition of the function frule, which adds these rules to the system, is
quite straightforward, and is given in Appendix 1. fide first decides whether a rule
applies to a line or a vertex. If it is a line rule, it is simply added to the global
variable LRULE by the function radd, which checks in the process that a rule for
such a line does not already exist. If one does exist already, a message is printed
to inform the user of the change of rule. Rules in LRULE are ordered on the basis
of mass name and status indicator to make the recognition of rules for equivalent
lines easier.

The addition of a vertex rule to the system is a little more complicated. In order
to include such rules in a unique manner, the masses given are first placed in the
canonical order defined by a system function or&p. The format of the rule must
then be changed by a renaming of the momentum, spin, and gamma matrix labels
to conform with the new ordering of masses. After this, the rule is added to the
global variable VRULE by raid, a check being made as before for a redefined rule.

306 CAMBELL AND HEARN

The third type of Feynman rule to be considered defines contributions from
explicit structural properties of a diagram. Such rules include:

(i) A factor of -1 for each closed fermion loop;
(ii) A factor of 4 for each closed loop containing only two photon lines;

(iii) A factor of 4 for each closed loop containing only two meson lines,

These rules require no a priori format specification, and are therefore included
during the explicit calculation of a matrix element which we discuss in the next
section.

(c) Computation of a Matrix Element from a Diagram

Having now defined a format for storing arbitrary rules for Feynman diagrams
in our system, it is a relatively straightforward matter to compute the Feynman
matrix element for any given diagram. This quantity is computed by the function
matrix, which takes a single diagram as argument and is defined with its associated
functions in Appendix 1. We shall assume in this discussion that all necessary
properties of the particles involved (masses, spins, etc.) are defined. If they are not,
then this will be detected during the calculation of the matrix element, and an
error message generated. In this case, matrix will return NIL.

The function matrix first computes the fermion paths of the diagram (using
inpaths and rempaths) which are then passed to matl. The function mat1 gives
each fermion path to mat2 which scans each term in the path, and looks up the
relevant line or vertex rule for each element encountered in the list. If no rule is
found, an error message is printed, and matl returns NIL. Having found the rule,
it is then necessary to rename the momenta, indices, polarization vectors and
fermion line variables in the rule by the current values associated with the relevant
particles.

A standard nomenclature is also used here. Indices for use in explicit matrix
elements are given names IO, 11, 12... etc., polarization vectors EO, El...and
fermion line variables LO, Ll.. Indices associated with a given momentum variable
are stored on the association list INDLIS, and polarization vectors on PLIS for
later reference. In addition, all indices and polarization vectors used in an expres-
sion are added to the global variables INDICES and POLVTRS, respectively. The
function mat2 then returns the matrix element for the whole fermion line to matl,
which renames the fermion line variables in this expression, and then repeats the
procedure for each subsequent fermion path. Finally, mat1 adds a factor of - 1 for
each internal fermion loop found to the list of matrix elements from all paths and
returns the expression to matrix. The latter function now computes the boson part
of the diagram, whose matrix element is then found by mat2 and added to the term
produced by matl. The complete matrix element is next scanned by the function

ANALYSIS OF FEYNMAN DIAGRAMS 307

uscan which removes all numbers and variables which are simple multiplicative
factors in the expression (such as coupling constants and factors of I) and places
them at the front of the expression. A final check for possible factors of 4 from
internal photon or meson loops completes the computation of the matrix element.

6. DIRAC ALGEBRA

In the previous section, the Dirac matrices were introduced through the defining
relation (5.1). From (5.1), there follows the property that any product of Dirac
matrices may be reduced to a sum of 16 terms. One of these terms contains the
4 x 4 unit matrix, four contain single Dirac matrices (i.e., Y,, , Y1 , Y2 , and Y&, six
contain factors of y,,‘yy where EL. f v, one depends only on ys = y0y1y2y8, and
four contain y5yp .

Programs which perform large-scale simplifications of expressions do not, in
general, gain in speed or efficiency if arbitrary products of Dirac matrices are
reduced to sums of I6 terms in advance of any other operations. In the present
situation, however, there may be occasions when this facility is of value. For
example, if the complete result of a calculation is to be the sum of several products,
and substantial cancellations are expected between products, the expression of
each product as a sum of 16 terms allows rapid inspection for these cancellations.
Alternatively, our programs automatically derive Dirac-matrix products sand-
wiched between spinors and adjoint spinors, and useful simplification of these
expressions may be available if one anticommutes factors like y * p through the
product structure by means of the relation

YUY ‘P + Y’PYU = 2PU (6.1)

until they meet a spinor function of p. When that happens, simplification is made
with the help of the Dirac equation

Y*PU(P) = mu(p), fi(p1y.p = mWp> (6.2)

Both of these types of simplification rely on the ability of the program to rearrange
factors in products by anticommutation via (6.1). We have implemented two
distinct methods of anticommutation, which we describe separately below.

First, in a large arbitrary product, we may identify all the occurrences of special
four-momenta like pz for which we wish to anticommute factors of y-p2 in either
direction. The functions

lcom[x]=prog[NIL;redlis := union[REDLIS;x];flag[x;LEFT];mshell[x]]
and rcom[x]=prog2[redlis := union[redlis;x];mshell[x]], (6.3)

308 CAMPBELL AND HEARN

for which x is a list of four-momenta, specify anticommutation to the left and
right, respectively. If P2 occurs in the argument of Icom, it is placed on the list
named REDLIS as an atom to be anticommuted (to the left, because of the flag
LEFT on its property list) to the end of any structure in which it occurs. Where
yap2 appears, the part of the program governed by the function sred effectively
makes repeated applications of (6.1). This section is called if needed inside matrix
at a stage after which all the parts of an unsimplified representation of a matrix
element have been derived from a Feynman diagram by the procedures desctibed
in Section 5. The function mshelf within (6.3) ensures that juxtapositions like
~-p~~.p~ in a product are replaced by rni . REDLIS is inspected by the program
before any terms of a product are simplified; if REDLIS has no members, regular
simplification proceeds but, otherwise, anticommutation of the type specified by
(6.1) and (6.3) is performed first.

The method discussed above is effective in computations which in principle can
have an arbitrary number of Dirac matrices in a product and, therefore, an arbitrary
number of different ordered patterns of Dirac matrices and four-momenta. On the
other hand, most calculations in perturbation theory which use Feynman diagrams
do not go beyond diagrams with about eight vertices and two fermion lines (not
including closed fermion loops). The maximum number of Dirac matrices obeying
(5.1) and (6.1) and leading to a nontrivial result when placed between a pair of
spinors in these cases is six. Therefore, it is reasonable to store representations of
each distinct pattern of Dirac matrices and numerators of rationalized propagators
together with the simplified general expression which results when one or more
factors of the form y-p are removed by the use of (6.2).

In the simplest case, consider the fermion line pzpapl shown in Fig. 3. The

P2 P6 P4

FIG. 3. Diagram illustrating the simplification under commutation of the part of an amplitude
expressed by Eqs. (6.4) and (6.5).

numerator of the amplitude for the process of which Fig. 3 illustrates a part con-
tains a factor

fi(P&U(YPl? + me)?% u@s) (6.4)

Suppose futther that k, = 0, so that ps = p* . Applying (6.1) for p=ps once, we
find that (6.4) reduces to

2P,G(P,) r&P& (6.5)

ANALYSIS OF FEYNMAN DIAGRAMS 309

since m, = m, . Where connections such as that between (6.4) and (6.5) exist, the
fastest method of programmed anticommutation avoids the direct use of (6.1) and
replaces unsimplified by simplified products by recognizing the patterns that pro-
ducts like (6.4) follow.

The LISP S-expression equivalent to (6.4) is

((UB L2 P4) (G L2 MU) (PLUS (G L2 P4) M4) (G L2 NU) (U L2 P2)), w4

where L2 labels the fermion line and the operator TIMES is implicit. The form of
factors between the spinors in (6.6) is adequately given by (G T G), where T is
chosen as the symbol to represent the numerator of a rationalized propagator. In
order to reduce (6.6) to an expression corresponding to (6.5), we need to select the
four-momenta from each factor where they occur, and Greek indices from the
remaining factors. Hence, (6.6) displays a structure (P4 MU P4 NU P2). The
function which acts on (6.6) to produce this pattern is pat?ern[x]. Given that the
various types of factor which can occur are well represented in (6.6), and that their
syntax is constant, pattern contains in essence only chains of operations of the
car-cdr type following tests with the predicate equal.

In fact, the value of pattern when x stands for (6.6) is

(P4 MU P4 NU P2 NIL NIL) (6.7)

The extra entries of NIL are to facilitate the use of the function apair, which in this
case detects the factor pa, for inclusion in (6.5) and prepares for cancellation from
(6.6) the factors which do not appear in an S-expression representation of (6.5). This
function, which is applied next in the overall algorithm, has as its result the dotted
pair whose car is a list of identifiers for the terms to be cancelled from (6.6) and
whose cdr is a list of factors like pa,, . As given in Appendix 1, apair has five argu-
ments; the first stands for the expression like (6.7) that is to be processed, and the
remaining arguments are merely for bookkeeping of partial results (since the
function is defined recursively). If the first argument of apair is actually the expres-
sion (6.7), the value of the function is ((3 2) (DOTP4 MU)). DOT is the LISP
prefix name for the scalar product operator * described in Section 5b.

Although apair detects (DOT P4 MU) in the example above, there remains the
question of how one programs recognition of the correct function of par (in this
case just 2p,,) which reproduces (6.5) exactly. To do this, we return to the pattern
(G T G) of types of factors which occur between the spinors in (6.6). During the
analysis of (6.6) by pattern, this structure is labelled by the atom ACOMLIST. We
can now make use of ACOMLIST by setting up as part of the program a table with
the form [a,;b,;a,;b,....], where each ai represents a pattern and the corresponding
bi gives the general multiplying factor which accompanies that pattern.

310 CAMPBELL AND HEARN

ACOMLJST is compared with each ai in turn until a correspondence is found. For
example, if

a, = (G T G), then b, = (TIMES 2 (DOT MOM INI)) or 2*(MOMl * IN1)

in infix notation. The table is a list called ARULE and in the program it is searched
by a function asearch. ARULE can be built up by the programmer with a function
atypes which works on the same principle as the rule-assigning function frule
described in Section 5.

It is now possibIe to describe in simplified form the function acommute which
implements this method of anticommutation by recognition of patterns and calls
the other functions discussed above. A definition is:

acommute[x]=prog[[a;b;c]; a:=pattern[x];b:=apair[a;NIL;l;length[x];NTL];
c:=car[b];b:=cdr[b];a:=dotsubs[b;asearch[acomlist;arule]];

return[append[a;acancel[x;c;f I]]] (6.8)

In (6.8), the purpose of the function dotsubs is to convert the dummy expression
(DOT MOM IN 1) to (DOT P4 MU) in the case of the example given. Also, since
we have observed that the value of upair during the processing of the example is
((3 2) (DOTP4 MU)), then the program variable c in (6.8) in this particular
situation takes the value (3 2). Hence, its presence as an argument of the final
function acancel may be understood; acancel removes from x the second and third
elements of that list, so that the output of acommute corresponds with (6.5). The
purpose of acuncel in general is just this cancellation of unwanted factors.

The programming methods discussed in this section are adequate to handle
problems involving Dirac matrices as the basic non-commutative items of data.
Where it is desirable to use other basic entities (e.g., in computation of the magnetic
moment of the electron [25], where FLLy is the electromagnetic stress tensor and
F = $ iyIIyyFfiy is needed frequently) having anticommutation properties other
than (5.1) or (6.1), the programs can be expanded fairly readily to accept the new
data, although we have not systematized that procedure and do not present it in
Appendix 1. It is only necessary to enter information about new patterns of factors
on ARULE, and extend the definition of pattern by one new test using equal to take
account of the behaviour of each new type of data under anticommutation.

The two methods of Dirac algebraic manipulation carried out by sred and
acommute are not exact alternatives; one can choose to use either method, both,
or neither. For the last choice, no special declaration is needed. Otherwise, the
function or functions required are declared in the initial stages of a program. For
example, if both are required, the programmer makes the declaration

ALGEBRA SRED, ACOMMUTE;
The declarative function algebra is included in Appendix 1.

ANALYSIS OF FEYNMAN DIAGRAMS 311

7. RECOGNITION OF INTEGRALS

If it is possible to trace out at least one continuous closed path purely on internal
lines of a given Feynman diagram, the matrix element derived from that diagram
will contain at least one nontrivial four-dimensional integral over an internal four-
momentum. A second type of integral that occurs in calculation of measurable
quantities is defined over phase space or momentum space for particles produced
in a process but not detected. This latter type, however, is encountered during the
simplification and reduction of the absolute square of a matrix element. Since the
aim of the programs discussed here is the production of an unsimplified absolute
square, phase-space integrals fall outside the scope of this paper. We remark only
that the problems associated with each type of integral are the same, and that the
result of a calculation involving extensive use of phase-space integration by table
look-up within the general simplifying program REDUCE [26] is reported else-
where [27]. In the rest of this section, we review methods for the recognition of
integrals that occur in the derivation of matrix elements from Feynman diagrams.

A typical integral arises from the diagram in Fig. 4. Suppose that it illustrates the

P3 Q-!-K

PS

Pl
H

P4

Pb

K
P2

FIG. 4. Example of a Feynman diagram which generates integrals including that in Eq. (7.1).

scattering of an electron (p1p6ps) from a proton (pz and p4) which is temporarily
excited to a nucleon resonance pe of mass r or RESM unequal to the proton mass.
To avoid complications that are unnecessary here, we assume that the spin of the
resonance is 4. Figure 4 raises some highly characteristic problems even though it
is the simplest Feynman diagram with a closed internal loop that does not merely
signify some kind of renormalization. First, for electron-proton scattering, we can
make a reasonable estimate of vertex rules at vertices on the proton line only if the
resonant object is not too far off its mass shell. This situation generally persists for
quite arbitrary scattering processes represented by Fig. 4. Secondly, the electro-
magnetic form factors Fl and F2 introduced in Section 5b are not known for all
values of their argument, but it appears that Fl falls off rapidly from a maximum
at an argument of zero. So it is usually assumed ([12], [28]) that the integral from

312 CAMPBELL AND HEARN

Fig. 4 is a sum of two contributions, one when the total four-momentum trans-
ferred in the scattering is q as shown, and one when the assignments of q + k and
k to the photon lines are reversed. For the first case, k * 0 and q+k a q. The
corresponding unsimplified integral, apart from factors at vertices, is

1
-1

d4k Y * p5 + m Y . ps + r
q2 k2 - A2 p52 - m2 pa2 - r2 . (7.1)

To enable the factoring of l/q2 in (7.1) to be carried out, we use the declarative
function xfervar to show that q is both fixed and the measure of momentum
transfer. Similarly, we distinguish k as the loop variable or variable of integration
with loopvar. The programmer in this instance makes the declarations

LOOPVAR K;

XFERVAR Q;

in advance of computation based on Fig. 4.
The S-expression form of the integrand in (7.1) is

((PLUS (G Ll P5) EM)(PLUS (G L2 P6) RESM)(PROPR K WLA)
(PROPR P5 EM)(PROPR P6 RESM)) (7.2)

with the overall operation TIMES implicit. From (7.2) it is not clear how P5 and
P6 depend on the loop variable K, so that substitutions are required as the first
stage of the calculation. The function momrep which we have met already in
Section 3d is used to arrive at the correct substitutions. In fact, it is sufficient to
let p5 w p1 and pa = p2 in the present example, but no approximations can be
made for substitutions into the PROPR factors in (7.2) without drastically affecting
the result. For example, p5=p1- k implies that ps2-m2 = k2--2p,-k, which is
totally different from the value of zero which would follow from the approxima-
tion. Also, pa=p2+ k implies that p,2-r2=kZ+ 2p,*k + M2-r2, which is
different in form from the denominator term for the electron. Both of these terms
now carry more information than can be accommodated in the simple PROPR
representation (5.2). Hence, the program uses a new and purely internal represen-
tation which is a list [DENOM;n;b;c], where b is the four-vector quantity whose
scalar or dot product with -2k occurs in the term under consideration, c stands
for the constant part of the term that is built only out of scalars, and n is the highest
degree of k in any part of the term. The latter item of information is not used
directly in the programs in Appendix 1, but has been helpful in heuristic programs
(discussed in Section 9) that analyze asymptotic behaviour of matrix elements.

ANALYSIS OF FEYNMAN DIAGRAMS 313

Initial substitution in (7.2) and conversion to the DENOM representation is
performed by a function iconvert.

lndividual terms of the types that we find most frequently in integrals are listed
below in the set of equivalences:

1 kz = (DENOM 2 0 0) = (1)

1 ~ k2 - A2 = (DENOM 2 0 (MINUS (EXPT WLA 2))) = (2)

1
k2 -2p.k=(DENOM2PO)=(3)

1
k2-2p.k-b = (DENOM 2 P (MINUS B)) = (4)

(7.3)

--A2 ~ = (DENOM 2 0 WTERM) = (5)
k2-A2

& = (DENOM 1 P)) = (6)

where (1 is the traditional ultraviolet cut-off parameter of field theory. Although A
is usually understood as an infrared cut-off, in (7.3) it can stand for any mass. The
identifiers 1 through 6 distinguish the six different types of term in a way that
allows a compact description of the structure of an integrand. For example, with
the use of (7.3), the product of denominator factors of (7.2) may be abbreviated by
(2 3 4).

The abbreviation is the key to a rapid look-up of a table where results of known
integrals are stored. We have seen examples of such tabular schemes for storage
in previous sections with rules for lines, vertices, and commutation patterns. A
table of integrals is of equal use in symbolic calculations, because the number of
four-dimensional integrals from closed internal loops whose solutions can be
expressed in analytic form is quite small. Therefore, the table does not occupy
much storage space and does not take long to search. Integral types for which
entries in the table have been prepared are (1 3 4), (1 4 5), (2 3 3), (2 3 4), (2 3 3 4),
(3 3 4), (3 3 5), (3 4 5), and (6 6). Most of these integrals have been evaluated by
the general methods of Brown and Feynman [29], but the results are not limited
only to the case of electron Compton scattering which was treated in that reference.
Other references used in the construction of the basic table have been [20] and [28].

The table in our program is arranged linearly in a single list whose name is
ITYP. The structure of the list is [a,;b,;%;bl....], where ai is a list of identifiers

314 CAMPBELL AND HEARN

corresponding to an integral result bi . The table is prepared or updated by a
function ifypes:

itypes[x]=ityp:=ifnull[ityp]then x else append[x;ityp]. (7.4)

Therefore, although the table contains initial entries, the programmer can add
new entries of his own choosing. For instance, if the result of the integration whose
coded type according to (7.3) is (2 2 2) is a function h(X) of the photon mass, this
result is added to ITYP by the declaration

ITYPES (2 2 2), H(WLA); (7.5)

The familiar infix notation may be used to express results bi , but ai must be in the
list form shown in (7.5). Arbitrary dummy arguments may be used for mnemonic
convenience in bi , but the program actually replaces them by IDl, ID2.... from a
list IDLIST for ease in later computation.

The next stage in the procedure is the examination of a representation like (7.2)
for contributions to an integral. This task is performed by a function idenom, which
not only calculates the identifier for each factor in the denominator but also picks
up the quantities like ha, p1 and MZ--r2 in (7.2) in terms of which the result of
integration is expressed. As we know how many of these quantities there will be
for a given integral, the representation bi of the integral in ITYP will contain that
number of dummy arguments. The value of idenom is not just a list of identifiers
for terms, but a list in which each identifier is followed by any new potential
arguments for eventual substitution in bi that have been found. When idenom is
given an integral of type (2 3 4) as an argument, the general result is:

(2 (ID1 MINUS (EXPT WLA 2)) 3 (ID2. P) 4 (MINUS B)) (7.6)

For substitutions to be made in the correct places in br , forms like (7.6) are expres-
sed by idenom so that the numerical identifiers always occur in ascending order. As
may be seen from (7.6), each argument is cdr of a dotted pair, where car is a dummy
label extracted from the list IDLIST which the program keeps for that purpose.

Last, the sequence of identifiers, like (2 3 4) above, is recovered from (7.6) by a
function iseurch that also searches for an entry ai on ITYP which is equal to that
sequence. The final stage of calculation is the substitution in br of arguments like
those in (7.6) by means of the LISP function sublis. The entire procedure described
in this section is administered by a function intop, whose short definition is:

intop[x]=prog[[u;v];u:=idenom[iconvert[x]];v:=isea~h[u;ityp];
retum[sublis[nonatom[u];v]]]. (7.7)

The deGnition of nonutom, which removes all atoms from its argument, is found
in Appendix 2.

ANALYSIS OF FJZYNMAN DIAGRAMS 315

The methods described so far are adequate for the integral (7.1), where no
explicit k dependence remains in the numerator because of the physical approxima-
tions in the problem. Nevertheless, other problems can generate integrals of the
type

or
I

k,d4k
(k2 - 2q . k - d)* (7.8)

s
k,kVd4k

(k2 - 2q . k - d)n (7.9)

However, the parameters q and d in an exact calculation are functions of further
variables of one-dimensional integration such as x in the Feynman integral identity

(AB)-’ = ,I [Ax + B(1 - x)1-” dx

and its generalizations to n factors. Thus, even though (7.8) reduces to

qu j- (k2 _ Sk- @I
(7.10)

and the integral over k may be recorded on ITYP, (7.10) then requires further
one-dimensional integrations over Feynman parameters. This is actually the way the
analytic expression for the integral over k in (7.10) is calculated, but since q,, in the
numerator is also a function of the Feynman parameters, the final result may
not be a single analytic form. It has been found that the most practical method here
is to regard the result as a new four-vector, and to assign it a name PINTl,PINT2,
from a list PINTLIST. This name may then appear in the output. The function
idenom collects potential arguments of the new object as before, but in this case
they are stored on a list PRESLIST as cdr of a dotted pair whose cur is the name
of the four-vector. The equivalences calculated by the program are printed out at
the end of the calculation.

Because of the identical denominators in (7.8) and (7.9), it may seem that a
similar treatment is required for (7.9). This is not so, because in most cases (7.9) can
be expressed as a sum of integrals like (7.1) or (7.8) through a projective method
of Brown and Feynman [29] which is discussed further in Section 9. As a clearly
optimal approach to this analysis in an algebraic program has not yet been decided,
the program in Appendix 1 is designed to halt calculation, in general, when faced
with an integral such as (7.9). There is an exception to this course when t~=v, for
then it may be possible to cancel the resulting factor of k2 with a factor of either k2
or k2-A2 (since the A2 is then superfluous) in the denominator and reduce the
problem to the detection of an integral with a solution on the list ITYP. The
program follows that procedure.

The controlling function in Appendix 1 for the integral branch of the program
is still intop, but its definition is rather more complicated than in (7.7) to allow it to

316 CAMPBELL AND HEARN

handle the separate courses of action as described above for the three general cases
illustrated by (7.1), (7.9), and (7.10).

8. SQUARING OF MATRIX ELEMENTS

(a) Preliminary

Although we have seen in previous sections that a certain amount of simphfica-
tion of matrix elements is possible by exploiting the general properties of gamma
matrices and the recognition of integrals, most applications of these techniques to
physical problems require the eventual calculation of a physically measurable
quantity such as a cross-section or a polarization of a final-state particle. Such
calculations require summations over spins of particles in a product of the conju-
gate of one matrix element by another. The procedure for performing this is quite
straightforward, and is given in many books, such as that of Bjorken and Drel1[2].
The steps involved in such a calculation are three in number, viz,

(i) Taking the conjugate of a matrix element and renaming summed indices
(ii) Performing spin sums by replacing products of matched spinors and polari-

zation vectors by projection operators,

(iii) Computing the resultant trace of the gamma matrix product and sum over
indices in terms of invariants or scalar products of the momenta given in the
problem.

We shall only consider the first two problems here; once a trace expression is
obtained we have the necessary input for any of the simplification programs which
calculate such traces, although our internal LISP representation forms a natural
input to a program such as REDUCE ([lo], [26]).

(b) Computation of Conjugates of Matrix Elements
The computation of the conjugate of a matrix element is another example of a

straightforward mapping operation. Because of our choice of metric and gamma
matrices, seven rules are involved in the calculation, namely:

(i) 1 + - I
(ii) U(P)-+ UB(P)

(iii) UB(P)+ U(P)

(iv) WV-+ VW) (8-l)
(4 WPJ--+ VP)

(4 y5+ -y5
(vii) the order of terms in a product of gamma matrices and spinors is reversed.
The validity of these rules follows immediately from the definition of the con-

jugate of a matrix element as given for example by Bjorken and Drell.

ANALYSlS OF FEYNMAN DIAGRAMS 317

The function cnj and its associated function gcnj which perform this transforma-
tion and rename summed indices, are given in Appendix 1 without further comment.

(c) Calculation of Sums over Spins and Polarizations

The computation of the sum over spins in a product of two matrix elements is a
less trivial operation. Again the rules for doing this are straightforward but more
searching of the expression is involved in their application. The rules for summing
over fermion spins are as follows:

,gs u,(p) ~&PI = (Y * p + m)4

(8.2)

where m is the mass of the particle with momentum p.
The difficulty which arises in applying these rules is that the matching right

spinor does not always occur adjacent to the left, and so the expression must be
searched for this spinor. Moreover, when it is found, the gamma matrix line
identification variables in the line associated with the right spinor must be renamed
to conform with the left. After the whole expression has been scanned in this
manner, the sum over the matrix components in (8.2) for a given line converts the
expression to a trace. The functions spinsum and jindline which perform these
operations are also given in Appendix 1.

A sum over particle polarizations if required follows in an analogous manner.
The relevant formulas are

c %% = -gw for photons
Y

and

+k k c E,E, = -g,, 2
6

for vector mesons.
Y

The application of these formulas, however, is more straightforward than that
of the analogous fermion formulas. In the case of photons, each polarization
vector encountered for the first time is declared an index, and a corresponding
minus sign included with the expression. With vector mesons, the first occurrence
of a polarization vector is renamed, both its new and old names are declared
indices, and the whole expression multiplied by the appropriately labelled projec-
tion operator in (8.3). These processes are performed by the function pohm
defined in Appendix 1.

Finally, a function mpair, whose two arguments are matrix elements, computes
the product of the conjugate of its first argument by its second using the procedures
described in this section.

318 CAMPBELL AND HEARN

9. HEURISTIC METHODS

(a) Preliminary

In this paper so far, we have considered the solution by computer of many of the
well-formed problems which arise in calculations in quantum electrodynamics and
other fields where processes are presented in terms of diagrams. For the cases which
we have discussed in detail, either there exist single algorithms or else individual
procedures which have appeared to us to be clearly superior to various available
alternatives. The question of heuristics involves choices between alternatives
where preferences are not clear-cut, description of operations which are not
particularly well-defined, and overall control of the programs which we have intro-
duced in the previous sections of this paper. These three types of questions are
listed in increasing order of difficulty. In Section 9b we consider asymptotic opera-
tions, an example of the first type. Section 9c contains a more general commentary
on integration than is found in Section 7. At present integration is probably best
classified as a problem of the second type, but recent mathematical work ([30], [31])
on the subject of integration in finite terms suggests that this status is rather
uncertain. Where there is a possibility that a procedure may become better defined
in the light of evidence gained during the operation of a program, ideally that
program should be able to improve itself by self-modification. The ability of LISP
programs to do so is explained further in Section 9d. We discuss the problem of
heuristic control of our computations in Section 9e, and conclude in Section 9f
with some remarks about future work.

(b) Asymptotic Operations

In general, when an algebraic result calculated by the programs is too long to be
useful in an understanding of the principal features of a problem, one tries to dis-
card all but the leading terms in some combination of kinematical variables. Hence,
the terms to be retained carry a certain minimum asymptotic weight, computed, for
example, from the power of the initial energy for a process. Since power-counting in
LISP is simply a matter of scanning arbitrary list structures for occurrences of a
given base (say X) in S-expressions such as X, (TIMES X X) or (EXPT X N), there
is no need to give detailed examples of appropriate functions. Also, excessive length
of results has not often constituted a difficulty of calculation with the programs
described in this paper. Of course, that situation is quite different [lo] for programs
which simplify the products of traces of Dirac matrices that occur in absolute
squares of matrix elements. We mention the power-counting technique here
because it is essentially common to the heuristics governing both types of program,
and because it is,. therefore, required by the procedures for heuristic control of
programs which are outlined in Section 9e.

A somewhat different justification for the use of asymptotic operations occurs

ANALYSIS OF FEYNMAN DIAGRAMS 319

with the examination of high-energy behaviour of matrix elements in a perturba-
tive approach to strong interactions. Broadly, the hope is that an inspection of
diagrams with relatively few vertices will suggest rules that can be generalized to
hold for diagrams of all orders, and that these rules will suggest in turn what is the
asymptotic dependence on a Lorentz-invariant measure of energy for the exact
matrix element. For all but the most simple diagrams, the integrations over internal
four-momenta present the greatest programming problem, because there are at
least two different possible representations of a matrix element during computation.
The first contains explicit integrals over four-momenta, e.g.,

s (k2 _ As)@” - qhf&k2 - 2P2 . k - b, ’ (9.1)

while the second is obtained from (9.1) by a conversion

1
-
2

in2 1 ‘da1 0 s ‘dru,
@a1 + aa - 1) 0 [~IPI + (a~ - 4 pe12 + b(a2 - 4 (9.2)

into integrals over Feynman parameters. The form (9.2) is the one in which existing
rules ([15], [32]) for the determination of asymptotic behaviour are most easily
applied. For example, if pI and p2 both refer to initial particles, s = (~~+p~)~ is the
Lorentz-invariant measure referred to above, and for diagrams with no more than
eight vertices it is a good rule determined by programs that the relevant power of s
is asymptotically -m, where m is the minimum number of parameters ai which
must be set equal to zero to remove the s dependence in forms like (9.2). Therefore,
one needs functions for algebraic manipulation to re-express forms in terms of
different variables as well as heuristic functions to generalize proposed “rules”.

Only the heuristic functions raise any difficulty in practice, but the writing of
these functions has not yet reached any degree of genera1 competence. The question
of how to produce programs which test rules for arbitrary orders of perturbation
theory is still without a systematic answer.

(c) Symbolic Integration

The simplicity of the presentation in Section 7 relies on the rather small number
of integrals generated by problems which have seemed to repay the effort for an
exact solution. Since the number must increase in the future as more problems are
produced by experiments at higher energies and greater accuracy, the method of
searches of tables must be supplemented by algorithms for actual symbolic integra-
tion. The technique of integration by parts is an obvious example. At various
times we have worked on several algorithms, but the usefulness of most of them
in physical problems cannot be estimated well from the small field of test calcula-
tions on which we have so far been able to try them.

320 CAMPBELL AND HEARN

For integrals over four-momenta, we discuss by way of illustration a projective
method of Brown and Feynman [29]. The method reduces the calculation of
integrals like (7.9) which are second-rank tensors to the solution of a set of simul-
taneous equations, followed by detection of simpler integrals such as (7.8) whose
values should already be recorded on tables by the programs of Appendix 1.
Suppose that we have an integral over k in which the denominator of the integrand
is a product of the factors

k2-X2, k2--2p,.k, k2--2p,-k and k2--2p,*k-b.

With the code of (7.3), we can then write (2 3 3 4) as a suitable abbreviation for the
denominator. The most genera1 form for the integral

I,, = ;$$ I (9.3)

must be

L = %bPl” + CzuP2u + CSUPSY + %L (9.4)

in terms of the “external” four-vectors in the problem. Using (9.3) and (9.4), and
taking the dot or scalar products of each equation with 2p, , 2p, , and 2p, in turn,
we obtain three equations, of which

2(clum12 + czlrpl* p2 + cs,pl. p3 + csplJ = I-$$$ - 1 -!%!f!L (2 3 4) ’ (9.5)

where the second term on the right-hand side is no longer a function of p1 , is a
representative example. A fourth equation can be obtained from the relation
between (9.3) and (9.4) for I,, . These four equations provide solutions for the
c coefficients, because values of all integrals on the right-hand sides of equations
like (9.5) should already be recorded on either of the lists ITYF’ or PRESLIST
quoted in Section 7. Once again, functions for algebraic manipulation are all that
are needed to make the solution of this set of simultaneous equations possible. For
systematic use, we expect the method to be quite fast when we have implemented
it with the help of existing functions [26] to expand determinants algebraically. In
principle, it is also valid for tensor quantities of higher rank than (9.3).

A second method of extension of tables that we have tested involves difIerentia-
tion. For example, if

I (k* - $,l: - 2p * k) = s &= f(h8, PI,

then

ANALYSIS OF FEYNMAN DIAGRAMS 321

LISP functions for symbolic differentiation are available [26] to assist in this type
of extension.

Whenever a technique of symbolic integration produces a new result, we add it
to one of the tables in the programs, because for subsequent uses of that result it is
faster to search tables than to carry out the actual calculation again.

The future of symbolic integration appears to be very promising, after recent
work on calculus programs in LISP by Moses [30], and the mathematical problem
of integration in finite terms by Risch [31]. Risch has shown in effect that most
of the integrals one expects to find in low orders of perturbation theory may be
evaluated in finite terms, and has provided some new algorithms for integration
which are general enough to warrant inclusion in LISP programs in the near future.
Moses has demonstrated, in his program SIN, that the heuristic procedures which
make choices among various different integrating algorithms can be extremely
fast and efficient. The experience reported in [30] is also applicable to the heuristic
organization of our own programs.

Our chief difficulty of integration in practice may be stated briefly. Often we must
consider integrals of the type

I
1

&4x'+dga+c)n
(9.6)

where the analytic result takes on completely different forms according to whether
B2-4AC is positive, zero, or negative. Since that discriminant is itself analytic and
not often simple, the result of the program must be expressed in three alternative
forms. Moreover, if the integral is over m Feynman parameters instead of the
single parameter x in (9.6), the final result, if it can be obtained, can have up to 3m
possible forms. Occurrences of m=5 are not rare; the calculation of the sixth-
order part of the magnetic moment of the electron generates many examples.
Therefore, one must have some heuristic scheme for reducing the size of the
answer, or a decision procedure whose task it is to admit defeat eventually and
write part of a Monte Carlo program for the evaluation of the integral. Work on
both of these requirements is continuing. While they have had some success in
calculation of radiative corrections for scattering experiments, much remains to be
done before the heuristic programs can handle an exercise as complicated as the
integration encountered in the magnetic-moment problem without frequent inter-
vention by the programmer.

(d) Interpreted Functions

In most programming languages, programs are compiled into some form of
machine code before they are run. In LISP, this step is only optional. Alternatively,
programs can be “interpreted” in LISP exactly as they stand after the unique
translation from the M-expression form found in Appendix 1 to S-expressions. It

322 CAMPBELL AND HEARN

is almost always correct that compiled functions operate faster than interpreted
functions, SO that in fact we do compiIe functions whose definitions are unlikely to
be changed, and which will be called many times in long production runs of a
program.

When the question of speed is irrelevant or unimportant, there is one strong
advantage of interpreted functions. As a comparison between Appendix 1 (con-
sisting of programs) and the various specimens of data given as examples through-
out this paper shows the, S expression syntax which somewhat resembles (2.12) is
the same for programs and for data. This is a feature not often found in other
programming languages, where usually the rules for writing programs and data are
completely distinct. Thus, in LISP, programs can treat other programs, or them-
selves, as data and, hence, modify themselves or each other. Therefore, LISP is an
ideal medium for the writing of “learning” programs, programs for artificial
intelligence, or heuristics of the type necessary for the control of our own programs.

So far, our main application of the method to a problem of physics has con-
cerned the calculation of a matrix element M, from a Feynman diagram with four
vertices, in such a way that it should be proportional to a matrix element M1 from
a diagram with two vertices [20]. Because the matrix elements are for electron-
proton scattering, and the form of the proton vertex function

xJ%q) + (2mP F&h
that occurs in M, is to be preserved in M, , only one out of about four different
sequences of algebraic substitutions for four-momenta is “correct”. The appro-
priate function produced this correct answer by trial and error, changed its own
definition to remove the incorrect possibilities, and then went on to take part in
the calculation of three other matrix elements from diagrams with four vertices,
where the form of the proton vertex function was also to be preserved. Historically,
this success was quite important because it obviated the need for the programmer
to test each alternative with a separate run of the program in a batch-processing
situation where turn-around time for jobs was of the order of three days.

(e) Heuristic Control of Calculations

The common feature of each of the problems discussed in preceding sections of
this paper and in [IO] is that a compact algorithm for their solution exists in LISP.
It is now almost trivial to write a program which links all of these routines together
and computes a differential cross-section, for example, from a given set of diagrams
or a Hamiltonian of interaction which generates these diagrams. For instance,
given a function, reduce, to carry through the calculation of traces and the sums
over indices, we can define a function cxlz to compute the differential cross-section
from any single diagram as follows:

cxn[dia] = A[[x]; mathprint[reduce[mpair[x;x]]]] [matrixldia]].

ANALYSIS OF FEYNMAN DIAGRAMS 323

The reason why such a naive approach to the complete calculation is not very
helpful for current research problems in quantum eletrodynamics is that the
amount of computation necessary, and the size of expressions produced, can
grow catastrophically large unless very careful control is exercised over the
calculation at each step. This is a lesson that a theoretical physicist leans quickly
if he is to hope for success in this field. It is equally important in the computer
program that such control is exercised. The point is to be stressed even more
in symbolic than in numerical calculations, because here the computation time and
storage requirements tend to grow at exponential rates rather than the power rates
encountered in numerical analysis. In each of the following paragraphs, we mention
some of the heuristic decisions which a theoretical physicist makes at various
places in a complete calculation.

At the diagram stage, we must select only those diagrams which are relevant to
the given calculation. For example, one usually rejects disconnected graphs, or
those whose contribution is known on heuristic grounds to be negligible for the
problem in hand. The decisions which influence this choice are not always easy to
formulate in detail. Thus, one habitually works with the Bethe-Salpeter equation
in the approximation that considers only ladder diagrams, because other ap-
proaches are considerably more difficult. We can hope for better methods of
selecting subsets of diagrams when the asymptotic operations described in Section
9b are more fully developed, so that they can add information to physicists’ present
stock of intuition.

At the matrix-element stage, much reduction is possible, particularly if closed
loops in diagrams are involved. Several suitable tricks have been proposed, and
their best review is provided by Nakanishi [33]. If such methods are not employed,
then, even if it may not be unduly difficult to keep track of the large numbers of
terms generated, eventual numerical calculation based on the symbolic result may
lose accuracy on computation if many terms contribute to the result. A simple
example [34] raises the question of how best to represent the value of Jt xne-kx dx
for calculation, when it occurs somewhere in a physical computation based on
LISP.

At the stage where matrix elements are squared, it may be best from the point
of view of symmetry and compactness to represent long traces which are associated
with the spin sums pictorially in terms of diagrams containing closed loops between
pairs of Feynman diagrams, as discussed by Bjorken and Drell [2]. An example of
such diagrams, which represent the distinct traces arising in the cross-section
computed from Fig. 2, is given in Fig. 5. As in this case, it often turns out that
because of the symmetries arising from identical fermions or bosons in a process,
many of the diagrams have the same topological structure, so that the cross-section
may be written in terms of a smaller set of traces than would normally be necessary.
This recognition can have an important bearing on the amount of computation

324 CAMPBELL AND HEARN

necessary, especially if integrations over loop or final-state momenta are necessary.
Additionally, the symmetries in the final cross-section may be more apparent if
such symmetries are recognized at this stage.

Following the principle of Section 1, we do not discuss trace algorithms and
their implementation in this paper. However, we note that the preparation of a
trace expression for evaluation, and the sequence in which trace operations are

FIG. 5. GraphicaI representation of the spin sums arising in the cross-section computed
from the Feynman diagrams in Fig. 2.

carried out, can have important consequences. To that extent, it may not always be
best to give the calculation to an arbitrary algebraic simplifying program. For
example, we have found by analyses of computing time that if we have a product
of two traces which share common indices, it is faster to use Chisholm’s algorithm
[35], which reduces the product to a sum of single traces, only if three or more
indices are shared. Otherwise, it is faster to compute each trace separately and then
contract indices. However, Chisholm’s algorithm may not be the optimal way even
for three or more indices, as one discovers that the same expression arises over and
over again in the computation of seemingly different traces. This was recognized
by Kahane [36], who found that it was possible in a single trace to reduce the
number of redundant calculations by a rearrangement of a pictorial representation
of the trace. This is an algorithm which is highly suited for computer implementa-
tion, and we are in the process of implementing it.

Finally, at all stages of calculation one should attempt to use asymptotic methods
to make reductions wherever possible.

ANALYSIS OF FEYNMAN DIAGRAMS 325

A successful theoretical physicist, then, incorporates many considerations of the
above type into his calculation, and a completely successful computer program for
performing these calculations must do the same.

Ultimately, we hope to include many of these ideas in a heuristic supervisory
program which will automatically control the calculation from start to finish. The
problems are fairly well-defined, even though no essential algorithms exist as such
for their solution. At the present time, the heuristic supervisor remains the phy-
sicist, who sits in front of a console, and directs the calculation now as we hope
that a program will do later. The most successful interface between man and
machine has been a keyboard and CRT display at the Stanford Artificial Intelli-
gence Project, backed by a high-speed line printer for hard copy.

(f) Future Activities

The main area of present and future work, on heuristic control and integration,
has been described above. In this development, we intend to make the maximum
use of man-machine interaction through such devices as teleprinters, so that future
improvements to our programs will only incidentally increase the scope or speed
of traditional batch processing for physical calculations.

To make the programs more convenient to use, work is in progress [37] on dis-
play routines, both to plot mathematical expressions in a textbook-like format and
to display graphical representations of the diagrams produced by the generating
program described in Section 4. It is then but a small step to perform the input of
diagrams directly with a light or sonic pen, and we expect, in addition, to announce
progress in these areas in our next report on this work.

There are also many important problems which we have not considered at all in
this paper. We quote here only two examples. First, late in Section 6 we mentioned
the question of introducing into a program a new item of data which does not
commute with all of the existing items. If this type of insertion by means of a state-
ment of the appropriate commutation or anticommutation relations in the input is
still practical on a large scale, physicists who wish to check the consistency of a set of
commutation relations or find the simplest such condition satisfied by an object
with unknown properties under commutation may be able to make use of the
programs. A LISP procedure which is very simple has been written to solve one
problem of consistency [38] that previously required one month of manual calcula-
tion, but the procedure appears to have genera1 validity. Second, the problem of
renormalization is one which must be understood algorithmically before a com-
plete solution of problems in quantum electrodynamics is possible. The recent
results of Yennie and Kuo [39] and Appelquist [40], and a recent LISP program
by Cahnet and Perrottet [41], point the cay to an automatic solution. We shall
be working on the implementation of these methods in the near future.

326 CAMPBELL AND HEARN

ACKNOWLEDGMENTS

Jointly, we thank Professor S. Gill for his hospitality in extending to us the computing facilities
of Imperial College during 1965 and 1966. One of us (J.A.C.) is happy to acknowledge the value
of advice from Professor R. H. Dalitz while working on this topic in the Department of Theoretic-
al Physics at Oxford University; and thanks I.B.M. (U.K.) Ltd. for the award of a fellowship.
The other (A.C.H.) expresses his gratitude to Professor J. McCarthy for providing a strong
impetus in the early stages of the project, and to Mr. S. R. Russell for continued assistance with
questions of programming.

REFERENCES

I. R. P. FEYNMAN, Phyr. Rev. 76 (1949), 769.
2. J. D. BJO~KEN AND S. D. DRELL, “Relativistic Quantum Mechanics,” McGraw-Hill, New

York, 1964.
3. R. M. WILCOX, unpublished Ph.D. thesis, University of Colorado, 1961.
4. S. M. SWANSON, J. Cornput. Whys. 4 (1969), 171.
5. H. J. KAtsER, Nucl. Phys. 43 (1963), 620.
6. M. VELTMAN, unpublished CERN memorandum (1965).
7. M. J. LEVINE, .7. Compur. Phys. 1 (1967), 454.
8. R. B. CLARK, unpublished Ph.D. thesis, Yale University, 1968.
9. D. DROR, private communication, 1968.

10. A. C. HEARN, Comm. ACM9 (1966), 573.
11. J. A. CAMPBELL, J. Comput. Phys. 2 (1968), 412.
12. J. A. CAMPBELL, Nucl. Phys. Bl (1967), 283.
13. J. MCCARTHY et al., “LISP 1.5 Programmer’s Manual,” 2nd ed., MIT Press, Cambridge,

Massachusetts, 1965.
14. A. C. HEARN, Bull. Amer. Phys. Sot. 9 (1964), 436.
15. R. J. EDEN, P. V. LANDSHOFF, D. I. OLIVE, AND J. C. POLKINGHORNE, “The Analytic S-

Matrix,” Cambridge University Press, Cambridge, England, 1966.
16. C. WEISSMAN, “LISP 1.5 Primer,” Dickenson, Belmont, Calif., 1967.
17. A. C. HEARN, “Standard LISP,” in LISP Programming Systems (D. G. Bobrow, Ed.) MIT

Press (to be published).
18. E. W. DDKSTRA, “Primer of ALGOL 60 Programming,” Academic Press, London/New York,

1962.
19. P. NAUR et al., Comm. ACM 6 (1963), 1.
20. J. A. CAMPBELL, unpublished D. Phil. thesis, University of oxford, 1966.
21. A. CHURCH, “The Calculi of Lambda-Conversion,” Princeton Univ. Press, Princeton, N.J.,

1941.
22. J. D. BJO~KEN AND S. D. DRELL, “Relativistic Quantum Fields,” McGraw-Hill, New York,

1965.
23. N. N. Booor.tunov AND D. V. SHIRKOV, “Introduction to the Theory of Quart&d Fields,”

Inter-science, New York, 1959.
24. G. C. WICK, Phys. Rev. 80 (1950), 268.
25. C. SOMMERL~ELD, Ann. Phys. 5 (1958) 26.
26. A. C. I-WARN, “REDUCE Users’ Manual,” revised version (unpublished Stanford Artificial

Intelligence Project Memo 50, revised, 1968); “REDUCE-A User-Oriented Interactive
System for Algebraic Simplification.” Interactive Systems for Experimental Applied Mathe-
matics, pp. 77-90 (M. Klerer and J. Reinfelds, Eds.), Academic Press, London/New York,
1968.

ANALYSIS OF FEYNMAN DIAGRAMS 327

27. A. C. HEARN, P. K. Kuo AND D. R. YENNIE, P/tys. Rev. 187 (1969). 1950.
28. Y. S. TSAI. Phys. Rev. 122 (1961), 1898.
29. L. M. BROWN AND R. P. FEYNMAN, Phys. Rev. 85 (1952), 241.
30. J. MOSES, unpublished Project MAC report MAC-TR-47, Massachusetts Institute of Tech-

nology (1967).
31. R. RLWH, Trans. Amer. Math. Sot. 139 (1969), 167.
32. P. G. FEDERBUSH AND M. T. GRISARU, ANI. Phys. 22 (1963) 263 and 299.
33. N. NAKANISHI, Progr. Theor. Phys. (Kyoto) 17 (1957), 401.
34. G. S. CHANDLER, T. THIRUNAMACHANDRAN AND J. A. CAMPBELL, J. Chem. Phyz 49 (1968),

3640.
35. J. S. R. CHISHOLM, Nuovo Cimento 30 (1963), 426.
36. J. KAHANE, I. Math. Phys. 9 (1968), 1732.
37. B. G. BAUMGART, private communication, 1968.
38. M. GELL-MANN, D. HORN AND J. WEYERS, Proc. Heidelberg ht. Conf. on Elementary Particles

(H. Filthuth, Ed.). p. 479. North-Holland, Amsterdam, 1968.
39. D. R. YENNIE AND P. K. Kuo, Ann. Phys. 51 (1969), 496.
40. T. APPELQ~JI~T, Ann. Phys. 54 (1969), 27.
41. J. CALMET AND M. PERR~I-~ET, private communication, 1969.

